maxon ceramic

Härter als Stahl.

Innovative Hightech-Keramikkomponenten.

www.maxonceramic.com

Keramische Präzisionsspindeln.

Keramische Achsen für Powertools.

Komplexe Formen in der Mikrotechnik.

Keramische Bauteile für Miniaturanwendungen.

Schützt vor hohen Temperaturen und aggressiven Medien.

Keramische Sensorgehäuse für die Messtechnik.

Brillante und kratzfeste Oberflächen.

Kopfhörergehäuse aus schwarzer Keramik.

Erfahrung und Innovation.

maxon ceramic.

maxon ceramic in Sexau, Deutschland, gehört zu maxon motor, dem weltweit führenden Anbieter von hochpräzisen Antriebssystemen aus der Schweiz. maxon ceramic verfügt über ein umfangreiches Know-how und über 20 Jahre Erfahrung auf dem Gebiet des Pulverspritzgusses. Kundenspezifische Keramik- und Metallbauteile werden mit innovativen Technologien wie CIM (Ceramic Injection Moulding) und MIM (Metal Injection Moulding) hergestellt.

Zusätzlich zu unserem umfassenden Standardprogramm bieten wir auch Bauteile gemäss Kundenspezifikation an. Neben Bauteilen für die Antriebstechnik und Uhrenindustrie entwickeln wir zum Beispiel äusserst präzise Spindeln aus Hochleistungskeramik. Unsere Entwicklungs- und Konstruktionsabteilung arbeitet mit modernster CAD Technik und der Möglichkeit der Finite Elemente Berechnung.

Nehmen Sie mit uns Kontakt auf. www.maxonceramic.com

Komplexe Formen in der Mikrotechnik.

Keramische Klinken in Automatikuhren.

In einem Uhrwerk müssen die kleinen Teile der Mechanik präzise gearbeitet sein, damit das Uhrwerk verlässlich läuft. Mit keramischen Bauteilen behalten die ineinandergreifenden Teile diese Präzision über bisher unerreichte Lebenszeiten.

Schützt vor hohen Temperaturen und aggressiven Medien.

Keramische Sensorgehäuse in einem Durchflussmesser.

Keramik widersteht widrigen Bedingungen. Als Sensorgehäuse zeigt es seine Widerstandsfähigkeit gegenüber hohen Temperaturen, abrasivem Staub im Gasstrom und chemisch aggressivem Kondensat. Die geringe Wärmeleitung schützt die Elektronik im Inneren des Sensors. Das passive Verhalten gegenüber elektrischen und magnetischen Feldern lässt den Einsatz von elektronischen Sensoren zu.

Brillante und kratzfeste Oberflächen.

Keramische Gehäuse für Kopfhörer.

Keramische Oberflächen bestechen durch Kratzfestigkeit und Glanz. Aufgrund der geringen Wämeleitung fühlt sich Keramik warm und angenehm an. Die kontinuierliche Entwicklung unserer Polier- und Formgebungsprozesse verbindet Ästhetik und Funktionalität in ganz besonderer Weise. Keramikgehäuse schützen die hochwertige Technik im Inneren und geben ihr ein dauerhaft hochwertiges Äusseres.

Zirkondioxid.

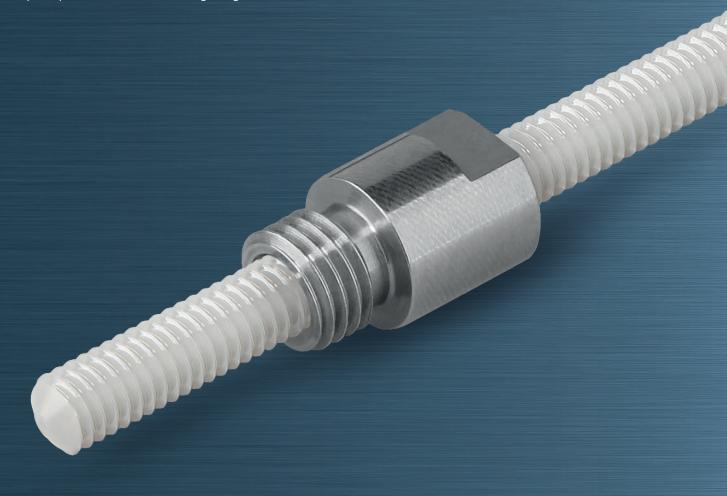
Zirkondioxid ist eine Hochleistungs-Industriekeramik, die ihre Anwendung vor allen Dingen in Bereichen findet, in denen herkömmliche Materialien versagen. Die zu erfüllenden Aufgaben sind dabei die Verschleissoptimierung sowie unmagnetische Anwendungen im Vakuum und in der Medizintechnik. Dies alles bei hohen Anforderungen an die chemische und thermische Beständigkeit, sowie bei thermischer und elektrischer Isolation.

Dabei besitzt Zirkondioxid in weiten Bereichen (Elastizitätsmodul von ca. 200 000 N/mm², Biegefestigkeit von >800 N/mm², Ausdehnungskoeffizient von 10 x 10-6 1/K) ähnliche Eigenschaften wie Stahl. Die Härte des Werkstoffes ist allerdings mit 1350 HV um ein Vielfaches höher, worin auch der grosse Vorteil der Keramik liegt. Damit erreicht man eine nahezu verschleissfeste Oberfläche.

Allgemeine Werkstoffeigenschaften.

Biegebruchfestigkeit	>800 N/mm ²
E-Modul	2 x 10 ⁵ N/mm ²
Dichte	≥6,03 g/cm ³
Härte	1350 HV
Wärmeausdehnungskoeffizient	10 x 10 ⁻⁶ 1/K
Wärmeleitfähigkeit	2 W/mK
Dielektrische Konstante	22 []
Elektrischer Widerstand	10 ⁸ Ωm

Präzisionsspindeln aus Keramik.

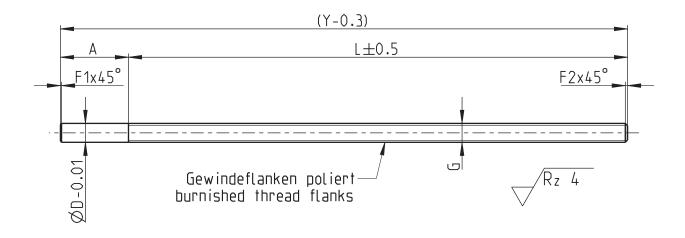

Die maxon cgs-Spindel – leichtgängig und verschleissfest.

Geschliffene Keramikoberflächen eignen sich hervorragend für gleitende Bewegungen. Unsere keramischen Spindeln mit speziell entwickelter cgs-Oberfläche (ceramic glide surface) arbeiten fast gänzlich ohne Slip-Stick Effekt. Keramikbauteile lassen sich leicht positionieren, dies auch im Bereich starker elektrischer Felder oder im Hochvakuum.

Dank des hohen Härtegrades der Keramik erreicht die maxon cgs-Spindel eine außerordentlich hohe Lebensdauer, vor allem im dynamischen Betrieb. Alle diese Eigenschaften machen Spindeln aus Keramik zu einer echten Alternative zu herkömmlichen Stahl- und Kugelumlaufspindeln.

cgs-Oberfläche für Keramikspindeln.

Um dieses feste Material für Spindeln zu nutzen, hat maxon ceramic die Spindelflanken mit der speziellen cgs-Oberflächenstruktur versehen. Diese führt zu einer bislang unerreichten Verschleissfestigkeit und einem sehr guten Wirkungsgrad. Damit sichert sich maxon einmal mehr eine Spitzenposition in Sachen Leistungsfähigkeit.


Keramik als Spindelwerkstoff ermöglicht den Einsatz in: - Anwendungen mit hoher Leistungsübertragung - Anwendungen mit langer Lebensdauer - Umgebung hoher Temperaturen - Magnetischen und elektrischen Feldern - Chemisch aggressiver Umgebung - Reinräumen

Vorteile von Keramikspindeln:

- Hervorragende Gleiteigenschaften
- Sehr hohe Verschleissfestigkeit
- Sehr none Verschleissiestigkeit
 Deutliche Erhöhung der Lebensdauer
 Hervorragender Wirkungsgrad
 Kaum vorhandener Stick Slip-Effekt

- Thermisch belastbare Spindeln (~800°C)
- Keine Erwärmung in InduktionsfeldernChemisch beständig

- Festigkeit, E-Modul und Wärmeausdehnung ähnlich wie Stahl

maxon Standardspindeln.

Keramikspindeln in weiss.

G	Farbe	Artikel-Nr.	D	A max.	L max.	F1	F2	(Y) max.
M2	weiss	426634	2.0	18	102	0.3	0.3	120
M2.5	weiss	426707	2.5	18	132	0.3	0.3	150
М3	weiss	426715	3.0	18	132	0.4	0.4	150
M4	weiss	426717	4.0	18	132	0.5	0.5	150
M5	weiss	426730	5.0	18	132	0.6	0.6	150
M6	weiss	426740	6.0	18	232	0.7	0.7	250
M8	weiss	426763	8.0	18	232	0.8	0.8	250
M10	weiss	426783	10.0	18	232	1.0	1.0	250

Keramikspindeln in schwarz.

G	Farbe	Artikel-Nr.	D	A max.	L max.	F1	F2	(Y) max.
M2	schwarz	427107	2.0	18	102	0.3	0.3	120
M2.5	schwarz	427186	2.5	18	132	0.3	0.3	150
М3	schwarz	427199	3.0	18	132	0.4	0.4	150
M4	schwarz	427209	4.0	18	132	0.5	0.5	150
M5	schwarz	427216	5.0	18	132	0.6	0.6	150
M6	schwarz	427221	6.0	18	232	0.7	0.7	250
M8	schwarz	427231	8.0	18	232	0.8	0.8	250

Systemspezifische Muttern.

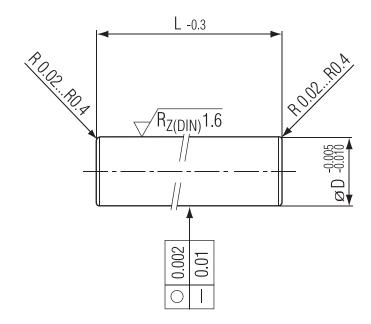
Die passende Mutter für jede Anwendung.

In Verbindung mit Keramikspindeln bieten wir Muttern aus Stahl, Messing, Bronze oder Kunststoff an. Für Anwendungen mit sehr hoher Anforderung an die Lebenszeit verwenden wir CVD-beschichtete Stahlmuttern.

Die Muttern profitieren von der speziellen maxon cgs-Oberfläche der Spindeln, sodass im Vergleich zu metallischen Spindeln wesentlich längere Lebensdauern erzielt werden. Für spielfreie Anwendungen bieten wir vorgespannte Muttern an. Für Anwendungen in starken magnetischen oder elektrischen Feldern bewähren sich Muttern aus Kunststoff. Für Bewegungen mit geringer Belastung kann die Mutter auch schmierstofffrei betrieben werden.

Individuelle Lösungen.

Neben unserem Standardprogramm bieten wir natürlich auch speziell auf Ihre Anwendung zugeschnittene Spindeln und Muttern an. Wir liefern auch Spindeln mit Feingewinde, Sondersteigungen sowie zweigängige Spindeln. Eine kundenspezifische Anbindung an Ihre Lagerung ist ebenfalls möglich. Bei Interesse stehen wir Ihnen gerne für nähere Informationen zur Verfügung.



Wie steigert man die Lebensdauer von Planetengetrieben?

Planetengetriebe gibt es seit Jahrhunderten, ihr einfacher Aufbau ermöglicht das Übertragen hoher Momente auf kleinem Bauraum, und Generationen von Technikern haben die Bauweise verfeinert. maxon motor hat zur Steigerung der Lebensdauer nicht nur die Präzision der Bauteile mit der fortschreitenden Entwicklung der Fertigungsmöglichkeiten erhöht, sondern hat durch den Einsatz eines neuen Materials neue Massstäbe für Wirkungsgrad und Lebensdauer gesetzt.

Der Einsatz von keramischen Achsen in unseren Getrieben führte zu einem eigenständigen Programm für keramische Rundstäbe. Zwischenzeitlich bewähren sich unsere keramischen Achsen auch als:

- Linearführungen
- Positionierstifte
- Gelenke
- Rollen

maxon Standardachsen.

Belastbar und langlebig.

Keramik ist ein hervorragender Werkstoff für kleine dynamische Systeme. Wenn die Miniaturisierung von Wälzlager an Ihre Grenzen stösst und das Fräsen komplexer Geometrien schwierig wird, ist Keramik der Werkstoff mit dem entscheidenden Plus. Mit seinen hervorragenden Gleiteigenschaften, der hohen Verschleißfestigkeit und durch Formgebung über Spritzguss ist Keramik konventionellen Lösungen entscheidend voraus.

ØD	L = 2.4	L = 6.4	L = 7.4	L = 10.6	L = 13.8	L = 15	L = 35	L = 40	L = 60	L = 70	L = 120
0.8	255899	255900	255901	255902	255903	255904	2559054)	3485014)	3485025)	348503 ⁶⁾	
1.0	255891	255892	255893	255894	255895	255896	2558984)	3484984)	3484995)	348500 ⁶⁾	
1.5	255883	255884	255885	255886	255887	255888	2558894)	2558904)	2557925)	255793 ⁶⁾	
2.0	255872	255873	348693	255875	255876	255877	255879	255880	255881	255882	
2.5	255864	1438253)7)	255866	255867	255868	255869	255870	255871	346621	348288	
3.0	255856	255857	255858	255859	255860	255861	255862	255863	346619	346620	
4.0	255845	255846	1668751)3)7)	1379621)3)7)	255849	255850	255851	255853	255854	255791	2557875)
5.0	255833	255834	255835	255836	255837	255838	255839	255840	255841	255842	2558435)
5.5	255818	255819	255820	255786	2050632)3)7)	255825	255826	255827	255828	255830	255831 ⁵⁾
6.0	255806	255807	255808	255809	255810	255811	255812	255813	255814	255815	255816 ⁵⁾
8.0	255794	255795	255796	255797	255798	255799	255800	255801	255802	255803	2558045)

¹⁾ Durchmessertoleranz abweichend: -0,008/-0,013

²⁾ Durchmessertoleranz abweichend: -0,013/-0,018

 $^{^{3)}}$ Kanten verrundet R 0,3 \pm 0,1

⁴⁾ Geradheitstoleranz abweichend: 0,02 mm

⁵⁾ Geradheitstoleranz abweichend: 0,03 mm

⁶⁾ Geradheitstoleranz abweichend: 0,04 mm
⁷⁾ Rundheitstoleranz abweichend: 0,003 mm

Präzise Antriebe seit 1961.

maxon motor entwickelt und baut präzise Antriebssysteme, die weltweit zu den Besten gehören. Sie werden überall dort eingesetzt, wo die Anforderungen hoch sind und Ingenieure keine Kompromisse eingehen wollen: maxon Motoren bewegen die Nasa-Rover auf dem Mars. Zudem sind sie in Insulinpumpen, chirurgischen Handgeräten, humanoiden Robotern oder in präzisen Industrieanlagen eingebaut. Wir bieten aber nicht nur Motoren, Getriebe, Encoder und Steuerungen an, sondern auch unser Wissen und unsere langjährige Erfahrung. maxon's Ingenieure sind seit 1961 echte Partner, wenn es darum geht, kundenspezifische Lösungen zu finden. Egal, was Sie brauchen, ob Prototypen, Spezialsysteme oder Grossserien. Wir helfen mit unserem weltweiten Vertriebsnetz, acht Produktionsstandorten und über 2500 Mitarbeitenden gerne weiter.

maxon motor GmbH
Untere Ziel 1, D-79350 Sexau, Deutschland
Telefon +49 (0) 7641 9114 0
www.maxonceramic.com